How to Assess Aortic Valve for TAVI by MDCT and MRI

Samir R. Kapadia, MD

Professor of Medicine Director, Sones Cardiac Catheterization Laboratories Cleveland Clinic

Goals of Screening Imaging Work-up

- Determine size of anulus
- Assess Aortic root
 - ST junction
 - LMT and RCA
 - Mitral anular calcification
 - Aortic and LV angle
- Determine access

Correct Measurement by Echo

Anulus Measurement Different Imaging Modalities

Tuzcu et al, JACC, J Am Coll Cardiol. 2010;55(3):195-7

Sizing with Balloon

Another Clue for the Size

22 mm

23 mm

Balloon movement with pacing cessation

Anatomy of the Aortic Valve

Inter-Trigonal Calcification: Relation to AR?

ST Junction Calcification

Valve Deployment

Severe Al

Cusp Anatomy and Coronary Ostia

Cusp Anatomy and Coronary Ostia

Kapadia SR et al, Catheter Cardiovasc Interv. 2009 Jun 1;73(7):966-72

Percutaneous Aortic Valve Replacement

Kapadia SR et al, Catheter Cardiovasc Interv. 2009 Jun 1;73(7):966-72

Final Result: Stents in the Left Main

Kapadia SR et al, Catheter Cardiovasc Interv. 2009 Jun 1;73(7):966-72

Stent in Coronary Ostia

LMT stent: Injection with BAV

Valve Deployment with Wire

Coronary un-compromised

How To Prevent Malpositioning?

Stent Length is 14-16 mm, there is one chance!

Selection of Fluoroscopic Projections

LAO 40 Cr 30

LAO 30 Cr 30

CT Scan : Definition of Aortic Plane

Kurra et al, JACC Cardiovasc Interv. 2010 Jan;3(1):105-13

Horizontal Valve Opening

Horizontal Balloon Entry

Difficult to Cross with Balloon

Crossing with a softer wire

Unable to Deliver Despite Snaring of the Wire

Horizontal Entry

Vascular Complications: PARTNER

"Moderately Difficult" Access

Common Femoral Imaging

Precise planning for the "skin entry" and anticipation of the "depth"

Guided Femoral Entry

Contrast Sparing CTA

- 5F pigtail in abdominal aorta
- Mix 20cc contrast + 60 cc saline
- Inject at 4 cc/sec for 10 seconds
- 13 cc of contrast

90 cc IV Contrast

Tortuosity: Can it Straighten?

23 -11

A

"Thinking is more interesting than knowing, but less interesting than looking"

- Goethe